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An old model for magnetic nematics

P. I. C. TEIXEIRA

Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, UK

(Received 12 May 1998; accepted 31 July 1998)

A mean-® eld treatment is given of the o� -lattice Krieger± James model of ordered ¯ uids,
which reduces to the more familiar Maier± Saupe liquid crystal (Heisenberg ¯ uid ) in the
absence of ferromagnetic (nematic) interactions. As in the lattice version, isotropic, nematic
and ferromagnetic nematic phases are found, but the nematic± ferronematic transition can
either change order at a tricritical point, or terminate at a critical end point on the
ferronematic± isotropic coexistence curve. In addition it is argued that the sequence of phase
diagram topologies, as a function of the relative weights of ferromagnetic and nematic
contributions to the free energy, should be similar to that obtained on varying the elongation
of dipolar spheroids.

1 . Introduction di� erent regimes were re® ned by means of a variant of
the Bethe approximation. Subsequently, MadhusudanaIt is often the case in the history of science that a
and Chandrasekhar [11] again applied the MF andmodel or theory should be formulated more than once,
Bethe approximations to the same system to study thebut named after one of its later, rather than original,
e� ect of dipolar forces (mimicked by A < 0 ) on the Ncreators [1]. Thus it was with Krieger and James
phase; these authors were mostly concerned with charac-[2]. They introduced a simple model of continuously-
terizing local and global orientational order, and didrotating spins on a lattice, with only nearest-neighbour
not calculate the phase diagram. Lei [12] proposedinteractions of the form
equation (1 ) as a suitable model potential for bowlic

E (h ij ) = Õ AP1 (cos h ij) Õ BP2 (cos h ij) (1 ) LCs (where columnar structures with up± down asym-
metry form due to molecular shape), but he merely

where A and B are positive constants, h ij is the angle quoted, and did not expand on, Krieger and James’s
between the spin directions at sites i and j, and Pn (x) results. The renormalization analyses of Margaritis et al.
is the nth Legendre polynomial. This was designed to [13] and Schoenmaker and Ruijgrok [14] yielded a
describe orientational transitions in solid molecular continuous I± N transition in three dimensions, which
crystals, but to the post-1970s liquid crystal (LC) theorist casts some doubt on their reliability. More recently,
it is immediately recognizable as a generalization of the Zannoni and co-workers [15, 16] mapped out the phase
Lebwohl± Lasher (LL) model of a nematic LC, to which diagram of the KJ lattice ¯ uid by Monte Carlo simu-
it reduces in the absence of ferromagnetic coupling lation and two-site cluster theory, thereby con® rming the
(A = 0 ) [3]. In sharp contrast to the attention lavished general topology of Krieger and James’s paper. Finally,
on LL by simulators [3 ± 8] and theorists [9, 10] alike, the same three phases occur in a two-dimensional version
the Krieger± James (KJ) model has languished in relative of the KJ model introduced by Korshunov [17] and by
obscurity. In their original paper, Krieger and James Lee and Grinstein [18]: here the I± N and I± F transitions
computed its phase diagram, latent heats and speci® c are Kosterlitz± Thouless, whereas N± F is of the Ising
heats using the mean-® eld (MF) approximation; it is type. Sluckin and Ziman [19] mapped this problem
straightforward to identify their èven’ phase as a nematic onto a quantum spin chain and solved it using the
(N) and their `mixed’ phase as a polar nematic Ð or transfer matrix formalism, ® nding behaviour consistent
ferromagnetic nematic (FN), as I shall call it in the with the predicted phase diagram.
remainder of this paper. They found that the transitions In this paper I consider the o� -lattice KJ model, i.e
from the isotropic (I) or N phases into the FN phase where an additional order parameter is introduced by
could be ® rst order or continuous, depending on the allowing the density to vary. The motivation is twofold.
ratio B/A (the I± N transition being always ® rst order). Firstly, this is the natural continuation of a series of

theoretical and simulation papers on the ferromagneticEstimates of the crossover temperatures between these
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722 P. I. C. Teixeira

Heisenberg ¯ uid (FHF) [20 ± 26] and the Maier± Saupe present theory is cast in thermotropic language, although
most experimentally studied ferronematics [30, 31] areLC (MSLC) [26 ± 28], which are special cases of KJ with

B = 0 or A = 0, respectively. It thus ties together the two lyotropics (thermotropics tend to phase separate when
doped [33] ). In this context B should be interpreted asstrands, of lattice studies of the full model on the one

hand, and of continuum, but less general, models on the a measure of molecular shape anisotropy, see [27] and
further discussion in § 4.other. Because both the FHF and the MSLC exhibit

rich phase behaviour including critical behaviour, the In the spirit of perturbation theory, the intermolecular
potential is written assame is a fortiori to be expected of the KJ ¯ uid. Secondly,

it is hoped hereby to provide a simple, but microscopic ,
wKJ (r12 , v1 , v2 ) =wref(r12 ) +wp (r12 , v1 , v2 ) (3 )

description of the f̀erronematics’ proposed by de Gennes
[29] and since fabricated [30, 31], which consist of where wref (r12 ) is the hard sphere (HS) r̀eference’ part,

and wp (r12 , v1 , v2 ) the longer ranged t̀ail’. The MFelongated magnetic particles dispersed in a nematic
medium. In this ® rst approach, treatment is restricted to Helmholtz free energy is then
the òne-component’ case: experimentally, this corresponds
to the limit where the average nematic orientation F [r(r, v) ]= Fref[r (r, v) ]+

1

2 P dr1 dv1 dr2 dv2

follows that of the magnetic grains and there is no
fractionation between coexisting phases. Furthermore, it Ö r(r1 , v1 )wp (r12 , v1 , v2 )r(r2 , v2 ) (4 )
is assumed that ferromagnetism is due to short ranged

where r(r, v) is the density± orientational pro® le. The(exchange) interactions (i.e. that polarity is weak). In the
free energy of the reference system, Fref[r (r, v)], consistsspirit of the FHF, these are taken to have a much
of ideal-gas and excess contributions, the latter due tosimpler orientational dependence than the long ranged
the excluded volume interaction:dipolar forces; complex domain structures such as those

obtained in, e.g. [32] will therefore be absent.
Fref[r (r, v)] = b Õ 1 P dr dv r(r, v) {log[L

3
r (r, v) ] Õ 1}This paper is organized as follows: in § 2 a MF

expression is derived for the free energy density of the
orientationally ordered (but positionally disordered) +F

exc
HS [r(r) ] (5 )

KJ ¯ uids. Results are presented in § 3 and compared
where b = 1/kBT , L is the thermal de Broglie wavelength,with those for the lattice system. Finally in § 4 the
r(r)= Ÿ dv r(r, v), and the orientational entropy is® ndings are summarized and their relation to the phase
described in the random-mixing approximation. In abehaviour of dipolar spheroids, which exhibit similar
uniform ¯ uid, the excess of free energy can be treated inphase diagram topologies, discussed.
a local approximation:

2 . Theory
F

exc
HS [r(r) ]= P drr(r)Y[r (r) ] (6 )Let us endow the KJ ¯ uid with the pair potential

with Y (r) an excess HS free energy per particle, to be
speci® ed later.

The free energy density (FED) of an orientationally
ordered, but positionally disordered, phase of density r,

wKJ(r12 , v1 , v2 )

= G+2 if r12 < s

Õ A A s

r12B 6

P1 (cos h12 )

Õ B A s

r12B 6

P2 (cos h12 ) if r12 >s

(2 ) is now²

f (r, g) = fhs (r) +rb Õ 1 7 log[4p fÃ (v) ] 8

Õ
1

2
A intr

2
g

2
1 Õ

1

2
B intr

2
g

2
2 (7 )

where r12 is the intermolecular vector of length r12 , v i=
where fhs (r)=rb Õ 1[ log(L3

r) Õ 1]+rY (r), fÃ (v)=r(v)/r(w i , h i , x i) is the set of orientational coordinates (Euler
is the orientational distribution function (ODF), 7 A 8 =angles) of molecule i, and s is the diameter of the
Ÿ dv A fÃ (v), and A int= 4ps

3
A /3, B int= 4ps

3
B/3 are the(spherical ) hard core. In this paper we shall take A > 0,

integrated strengths of the ferromagnetic and nematicB > 0, which are appropriate to a ferromagnetic nematic.
parts of the potential, respectively. In equation (7 ), g1 andAs we shall work within the MF approximation, the
g2 are, respectively, the polar and nematic orientationaldetailed r12 -dependence of wKJ(r12 , v1 , v2 ) is immaterial,

provided it is short ranged; the above choice is made
for consistency with earlier work (see [26] and references ² See [22, 27] for details, as our wp (r12 , v1 , v2 ) is a superposition

of those used in either reference.therein). It is important to note at this stage that the
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723An old model for magnetic nematics

order parameters, de® ned as for the ferromagnetic instability density rinst:

g1 = P P1 (cos h) fÃ (v) dv (8 ) br instA intC g2 (rinst) +
1

2 D =
3

2
(16 )

which reduces to the usual Curie line if g2 = 0.
g2 = P P2 (cos h) fÃ (v) dv. (9 )

3 . Results
Again for consistency with previous work [27, 28], Phase diagrams have been calculated by equating
we take for Y (r) the Percus± Yevick (compressibility) pressures and chemical potentials of the ordered (N or
expression [34, 35]: FN) and disordered (I) phases, equations (13 ) and (14).

All results are given in terms of the reduced density
bY (r)= Õ log (1 Õ j ) +

6j Õ 9j
2 +3j

3

2 (1 Õ j )
3 (10) r* = rs

3, the reduced temperature T * = kBT /(A +B ),
and the ratio R = B int /A int= B/A of nematic to ferro-

where j = prs
3
/6 is the packing fraction. Minimizing magnetic interaction strengths. Figures 1 ± 4 illustrate the

the FED with respect to the ODF (see, e.g. [27] ), we six di� erent topologies obtained.
obtain The same four types of transition have been identi® ed

as in Krieger and James’s original study of the latticefÃ (v) = Z Õ 1 exp {br[A intg1 P1 (cos h) +Bintg2 P2 (cos h) ]}
model [2]: a continuous order± disorder transition between

(11 ) FN and I phases; continuous or ® rst order magnetic
ordering transitions between the N and FN phases; and

Z =P exp {br[A intg1 P1 (cos h)+Bintg2 P2 (cos h) ]} dv. a ® rst order transition between I and FN phases. At
small R , corresponding to an interaction potential with
a large ferromagnetic admixture, only two phases, I and(12 )
FN, are present: the I± FN transition is ® rst order at low

The equilibrium pressure p and chemical potential m are
temperatures and becomes continuous at a tricritical

likewise given by
point (tcp), see ® gure 1; this corresponds to range I in
[2]. As R is increased, the tcp moves to higher and

p = phs Õ
1

2
r

2
(A intg

2
1 +B intg

2
2 ) (13 ) higher densities and temperatures, until the transition

m = mhs+b Õ 1 logA 4p

Z B (14 )

phs , mhs being, respectively, the pressure and chemical
potential of the HS system. In the I phase g1 = g2 = 0,
Z = 4p and equations (13) and (14) reduce to p = phs ,
m = mhs .

Because ferromagnetic ordering can set in via a con-
tinuous transition [2], it is important to look at the
stability of the I or N phases with respect to FN
¯ uctuations. This is done by searching for the lowest
densities at which equation (8 ) acquires a non-trivial
(i.e. g1 Þ 0 ) solution. Substitution of equation (11) into
(8 ) yields, by straightforward algebra:

g1 =
2

3eB

expC 3

2
eB (l

2+1 )D sinh eA

I A 3

2
eB , 1 +lB +I A 3

2
eB , 1 Õ lB

Õ l

Figure 1. Phase diagram of the KJ ¯ uid for R = B/A = 0
(solid lines) and R =0.5 (dotted lines); the dashed lines
are the Curie lines ( loci of continuous order± disorder

(15 ) transitions). r* =rs3 and T * = kB T /(A +B ) are the
reduced temperature and reduced density, respectively.where eA=brA intg1 , eB=brB intg2 , l=eA /(3eB ) , I (x , y)=
I= isotropic phase; FN= ferromagnetic nematic phase;

exp(xy
2 )D (y Ó x)/ Ó x , and D (x)=exp (Õ x

2 ) Ÿ
x
0 exp ( t2 ) dt tcp= tricritical point. Increasing R destabilizes the FN

is Dawson’s integral. Expanding the right hand side of phase and derives the tcp to higher (reduced ) temperatures
and densities.equation (15 ) about g1 = 0, we ® nd the implicit equation
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724 P. I. C. Teixeira

Figure 2. Phase diagram of the KJ ¯ uid for R =B/A =2.
r* =rs3 and T * =kB T /(A +B ) are the reduced temper-
ature and reduced density, respectively. I= isotropic
phase; FN= ferromagnetic nematic phase. The tricritical
point (tcp) has disappeared, and consequently the I± N
transition is everywhere ® rst order (i.e. it is driven by
nematic, rather than ferromagnetic, ordering).

is ® rst order everywhere (or at least as far out as the
coexistence equations could be solved, which was well
beyond the normal range of liquid densities), see ® gure 2.
Thus for 0.58QRQ2.9 we ® nd ourselves in ranges II± III
of [2]. If RQ2.9, a N phase appears at high temper-
atures, where on raising the density we ® rst go from I
to N via a ® rst order transition, and then from N to
FN via a continuous transition, see ® gure 3; at lower
temperatures there is a direct ( ® rst order) transition from
I to FN (range IV in [2] ). The N± FN transition line
terminates at a di� erent tcp, below which there extends
a narrow N± FN coexistence region ( leading to an

(a)

(b)
I± N± FN triple point). This tcp moves to lower temper-

Figure 3. Phase diagram of the KJ ¯ uid for (a) R = B/A = 3
atures and densities on increasing R further, until at and (b) R =3.5; the dashed lines are the Curie lines ( loci
R ~6.93 it transforms into a critical endpoint (cep) on of continuous order± disorder transitions). r* =rs3 and
the I± FN coexistence curve (see ® gure 4 ). For RQ6.93 T *=kBT /(A +B ) are the reduced temperature and reduced

density, respectively. I= Isotropic phase; N= nematicwe are in range V of [2], where increasing R moves the
phase; FN= ferromagnetic nematic phase; tcp = tricriticalcep, and consequently the FN phase it bounds, to ever
point. A new tcp has appeared (see inset of (a) for detail ),

higher densities and ever lower temperatures, until at where now the N± FN transition (as opposed to I± FN in
R =2 we are left with I and N phases only. The cross ® gure 1 ) changes order; notice the (very narrow) regions
over values of R are collected, and contrasted with those of N± FN coexistence between the tcp and the I± N± FN

triple point. For R = 3.5 the tcp is well within the rangeof [2], in the table. Agreement is almost perfect for
of typical liquid densities.small R , which probably re¯ ects the fact that the tcp

occurs at high densities, where a continuum and a lattice
model di� er little. Note, however, that some of the action 4 . Discussion and conclusions

The phase diagram of the KJ ¯ uid has been com-might be pre-empted by the formation of solid phases
[24], which have not been considered here; on the basis puted for di� erent ratios R of the strength of nematic to

ferromagnetic forces. The same topologies have beenof previous work, we expect the FN liquid to become
unstable relative to the orientationally ordered solid for found as for the lattice model [2], but in addition we

have been able to identify two types of critical points.r* ~ 0.7 [26].
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725An old model for magnetic nematics

Table. Topology of the phase diagram of the KJ ¯ uid from MF theory. I= isotropic; N= nematic; FN= ferromagnetic nematic;
tcp = tricritical point; cep=critical end point. The extreme left and extreme right columns are Krieger and James’s [2]
nomenclature and results for the lattice version of the model: agreement is excellent at large R , corresponding to high tcp
densities. At lower densities, a ¯ uid contains much more entropy than a lattice, driving up the cross over R between ranges
IV and V.

Range [2] Ordering transition (s) This work Krieger and James [2]

I I to FN, changes order at tcp 0< R < 0.58 0<R <0.56
II, III I to FN, ® rst order 0.58< R < 2.9 0.56<R <2.89

IV G I to N, first order;
N to FN, changes order at tcp;
I to FN, first order H 2.9< R < 6.93 2.89<R <3.21

V G I to N, first order;
N to FN, continuous, ends at cep;
I to FN, first order H R >6.93 R >3.21

tcp to cep criticality, should be (at least partially) within
the liquid range.

One ® nal point concerns the similarity between the
above results and those reported by Groh and Dietrich
for two ¯ uids of dipolar non-spherical particles [36]. In
their paper the e� ect of increasing particle elongation k

has almost the same e� ect on the phase diagram as we
obtain by increasing R . Di� erences are the presence in
their work of two tcps and a re-entrant N phase at low
temperatures (although the latter could be an artifact
of the approximations used). Moreover it is not clear
whether they see a cep or not. Let us address this issue
by examining the stability of the I phase. According to
Stecki and Kloczkowski [37], the condition of absolute
stability of the I phase with respect to orientational
¯ uctuations of symmetry l (where l= 1 corresponds to
a ferromagnetic and l = 2 to a nematic) is

Figure 4. Phase diagram of the KJ ¯ uid for R = B/A = 2
(solid lines) and R = 8 (dotted lines); the dashed lines
are the Curie lines ( loci of continuous order± disorder 1 Õ r( 2l+1 ) Õ 1/2P +2

0

dr12 c
ll0

(r12 ) = 0 (17 )
transitions). r*=rs3 and T *=kB T /(A +B) are the reduced
temperature and reduced density, respectively. I= isotropic

where c
ll0 (r12 ) is a coe� cient in the rotational invariantphase; N=nematic phase; FN= ferromagnetic nematic

expansion of the direct correlation function (DCF),phase; cep= critical end point. As R is increased, the cep
moves up the FN branch of the I± FN coexistence to c (r12 , v1 , v2 ). Within our MF theory, c (r12 , v1 , v2 )=
ever higher densities and lower temperatures, until the Õ bwKJ(r12 , v1 , v2 ) and it is immediately seen that
FN phase disappears at R = 2 ( in practice it would be increasing R lowers the instability limit with respect topre-empted by a solid phase before that).

the N phase, relative to that with respect to the FN
phase. Likewise, although Groh and Dietrich use a
di� erent approximation for the DCF, their equation (24 )In this preliminary study treatment has been restricted

to the simplest MF approximation, which has been has the same form as our equation (7 ), and the above
discussion also applies. When k is raised or lowered fromshown [15, 16] correctly to describe the general features

of the phase behaviour of the lattice KJ model. One 1, u2 (playing the role of our B int ) must grow relative to
u1 (playing the role of our A int ) [37, equation (25 )] asexpects, however, that ¯ uctuations will carry more

weight in the continuum ¯ uid, hence simulations of this the molecule becomes less and less spherical, thus
favouring the (non-polar) N instability of the I phase.system would be desirable. Furthermore, no attempt

has been made to calculate solid phase boundaries; In this sense, we can interpret our B as a measure
of molecular asphericity. Crucially, the bulk phaseresults of earlier work [26] suggest nevertheless that all

transitions predicted here, as well as the cross over from behaviour (i.e. involving macroscopically homogeneous
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